The model

The model can be found on my personal Github. An up to date version, that may have been changed since writing this report can be found at the deshima-sensitivity github and can be used via the python package installer pip install deshima-sensitivity.

Bibliography

  1. [1]E. Optics, “Introduction to Optical Prisms,” Edmund Optics. [Online]. Available at: https://www.edmundoptics.eu/knowledge-center/application-notes/optics/introduction-to-optical-prisms/
  2. [2]R. Nave, “Carbon Energy Levels,” hyperphysics.phy. [Online]. Available at: http://hyperphysics.phy-astr.gsu.edu/hbase/Atomic/carbon.html
  3. [3]A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen der Physik, vol. 322, no. 10, pp. 891–921, 1905, doi: 10.1002/andp.19053221004.
  4. [4]V. M. Slipher, “Radial velocity observations of spiral nebulae,” The Observatory, vol. 40, pp. 304–306, 1917, doi: 10.1002/andp.19053221004.
  5. [5]B. L. Morgan and L. Mandel, “Measurement of Photon Bunching in a Thermal Light Beam,” Physical Review Letters, vol. 16, no. 22, pp. 1012–1015, 1966, doi: 10.1103/physrevlett.16.1012.
  6. [6]R. Meservey and P. M. Tedrow, “Measurements of the Kinetic Inductance of Superconducting Linear Structures,” Journal of Applied Physics, vol. 40, no. 5, pp. 2028–2034, 1969, doi: 10.1063/1.1657905.
  7. [7]P. L. Richards, “Bolometers for infrared and millimeter waves,” Journal of Applied Physics, vol. 76, no. 1, pp. 1–24, 1994, doi: 10.1063/1.357128.
  8. [8]G. P. Tozzi, P. D. Feldman, and M. C. Festou, “Origin and production of C( 1 D) atoms in cometary comae,” Astronomy and Astrophysics, vol. 330, pp. 753–763, 1998.
  9. [9]A. Blain, “Submillimeter galaxies,” Physics Reports, vol. 369, no. 2, pp. 111–176, Jan. 2002, doi: 10.1016/s0370-1573(02)00134-5.
  10. [10]J. Zmuidzinas, “Thermal noise and correlations in photon detection,” Applied Optics, vol. 42, no. 25, p. 4989, 2003, doi: 10.1364/ao.42.004989.
  11. [11]H. Paul, Introduction to quantum optics: from light quanta to quantum teleportation. Cambridge University Press, 2004, pp. 127–153.
  12. [12]A. J. Baker, From z-machines to ALMA: (sub)millimeter spectroscopy of galaxies: proceedings of a workshop held at the North American ALMA Science Center of the National Radio Astronomy Observatory in Charlottesville, Virginia, United States, 12-14 January 2006. Astronomical Soc. of the Pacific, 2007, p. 375.
  13. [13]S. Leclercq, “Discussion about Noise Equivalent Power and its use for photon noise calculation,” 2007 [Online]. Available at: https://www.iram.fr/ leclercq/Reports/About_NEP_photon_noise.pdf
  14. [14]C. S. Turner, “Johnson Nyquist noise - clay’s DSP Page,” Johnson-Nyquist Noise. Wireless Systems Engineering, Inc., Jan-2007 [Online]. Available at: http://www.claysturner.com/dsp/Johnson-Nyquist%20Noise.pdf
  15. [15]G. B. Taylor, C. L. Carilli, and R. A. Perley, Synthesis imaging in radio astronomy II: a collection of lectures from the Sixth NRAO/NMIMT Synthesis Imaging Summer School held at Socorro, New Mexico, USA, 17-23 June 1998. Astronomical Society of the Pacific, 2008, pp. 671–688.
  16. [16]D. R. Jacobsen, “Atacama Submillimeter Telescope Experiment complex, Chile.” English Wikipedia, 06-Jul-2008 [Online]. Available at: https://commons.wikimedia.org/w/index.php?curid=60009729
  17. [17]H. Hahn, “Diagram Reflector Cassegrain.” Wikimedia, 01-Apr-2010 [Online]. Available at: https://nl.m.wikipedia.org/wiki/Bestand:Diagram_Reflector_Cassegrain.svg
  18. [18]F. M. Dekking, C. Kraaikamp, L. H.P, and L. E. Meester, A modern introduction to probability and statistics: Understanding why and how. Springer-Verlag, 2011.
  19. [19]J. Baselmans, “Kinetic inductance detectors,” Journal of Low Temperature Physics, vol. 167, no. 3-4, pp. 292–304, 2012, doi: 10.1007/s10909-011-0448-8.
  20. [20]M. Krottenmüller, “Photon Statistics,” Technische Universität München. May-2013 [Online]. Available at: https://www.mpq.mpg.de/5020834/0508a_photon_statistics.pdf
  21. [21]P. J. D. Visser, J. J. A. Baselmans, J. Bueno, N. Llombart, and T. M. Klapwijk, “Fluctuations in the electron system of a superconductor exposed to a photon flux,” Nature Communications, vol. 5, no. 1, 2014, doi: 10.1038/ncomms4130.
  22. [22]P. J. de Visser, “Quasiparticle dynamics in aluminium superconducting microwave resonators,” Mar. 2014, doi: 10.4233/uuid:eae4c9fc-f90d-4c12-a878-8428ee4adb4c.
  23. [23]D. R. Wilkins and S. J. Crass, “Institute of Astronomy,” ALMA detects the most distant oxygen ever | Institute of Astronomy. University of Cambridge, Jun-2016 [Online]. Available at: https://www.ast.cam.ac.uk/content/alma.detects.most.distant.oxygen.ever
  24. [24]Y. Zhou et al., “Superbunching Pseudothermal Light,” Physical Review A, vol. 95, no. 5, Mar. 2017, doi: 10.1103/physreva.95.053809.
  25. [25]R. Garner, “Messier 16 (The Eagle Nebula),” NASA. NASA, Oct-2017 [Online]. Available at: https://www.nasa.gov/feature/goddard/2017/messier-16-the-eagle-nebula
  26. [26]A. Endo et al., “First light demonstration of the integrated superconducting spectrometer,” Nature Astronomy, vol. 3, no. 11, pp. 989–996, 2019, doi: 10.1038/s41550-019-0850-8.
  27. [27]A. Endo et al., “Wideband on-chip terahertz spectrometer based on a superconducting filterbank,” Journal of Astronomical Telescopes, Instruments, and Systems, vol. 5, no. 03, p. 1, 2019, doi: 10.1117/1.jatis.5.3.035004.
  28. [28]E. et al. Huijten, “TiEMPO: Open-source time-dependent end-to-end model for simulating ground-based submillimeter astronomical observations,” Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 2020, doi: 10.1117/12.2561014.
  29. [29]A. Lemke, “The visible light spectrum,” Once Inc. Aug-2020 [Online]. Available at: https://www.once.lighting/visible-light-spectrum/
  30. [30]A. Endo, “Memo: Poisson limit and bunching limit of photon NEP: Deshima Kibela,” Memo: Poisson limit and Bunching limit of Photon NEP. Kibela, Nov-2020 [Online]. Available at: https://deshima.kibe.la/shared/entries/96349e15-acfa-474f-adf8-f21ebe25cda5
  31. [31]T. Bakx and S. Brackenhoff, “galspec v0.2.6,” pypi.org. Open Source, Nov-2020 [Online]. Available at: https://pypi.org/project/opensimplex/
  32. [32]A. Endo, “Session 2 | Line Emission and Cosmological Redshift ,” EE3350TU Introduction to Radio Astronomy. Nov-2020.
  33. [33]A. Endo, “Session 4 | Photon Noise,” EE3350TU Introduction to Radio Astronomy. Dec-2020.
  34. [34]M. Rybak et al., “DESHIMA 2.0: Rapid redshift surveys and multi-line spectroscopy of dusty galaxies.” 2021.
  35. [35]A. P. Laguna, K. Karatsu, D. Thoen, B. Murugesan rp, A. Endo, and J. Baselmans, “Terahertz Band-Pass Filters for Wideband Superconducting On-Chip Filter-Bank Spectrometers,” IEEE Transactions on Terahertz Science and Technology, vol. 11, no. 6, pp. 635–646, 2021, doi: 10.1109/tthz.2021.3095429.
  36. [36]C. K. Alexander and M. N. Sadiku, Fundamentals of Electric Circuits, 7th ed. McGraw-Hill Education, 2021.
  37. [37]A. Taniguchi et al., “DESHIMA 2.0: development of an integrated superconducting spectrometer for science-grade astronomical observations.” 2021.
  38. [38]A. Endo and A. Taniguchi, “deshima-sensitivity v0.3.0,” pypi.org. Open Source, Jun-2021 [Online]. Available at: https://pypi.org/project/deshima-sensitivity/
  39. [39]K. Spencer and O. S. Community, “opensimplex v0.3,” pypi.org. Open Source, Dec-2021 [Online]. Available at: https://pypi.org/project/opensimplex/